接着他又将这个数据整个放在了一个坐标系中,并且将这个坐标系放在了自己刚才所想到的“模曲线游乐园”之中。
脑海中的思考,又在不经意间来到了新的地步。
“模曲线的主要问题就在于尽管它提供了许多有用的信息,但并不能完全解释扩展L-函数的所有性质,比如某些特殊值,以及这些特殊值与椭圆曲线的算术性质之间的关系。”
“所以就需要一个比模曲线更‘丰富’的对象……”
脑海中刮起了头脑风暴。
但是又很快就停了下来。
因为这个时候轮到他们上去了。
和洛明雅钻进了一个舱中,相对而坐,然后工作人员将舱门关闭。
随着设施机械臂的缓慢转动,他们开始逐渐上升。
洛明雅看着坐在对面的萧易。
萧易则是看着外面的结构。
此时他脑海中的景象仍然是完美工程下的图像,圆形的结构,而他们则是在这个轨道上面的点,不断地在轨道上转动,并且形成了一个连续的曲线。
虽然从纯粹的数学意义上面来说,圆和椭圆并不能看作是同类,因为两者的定义是不同的,圆是平面上到某一固定点(圆心)距离等于某一固定值(半径)的所有点的集合;而椭圆是平面上到两个固定点(焦点)距离之和等于某一固定值的所有点的集合。
不过,这是从严格定义上来说的,如果单纯地从椭圆参数方程来说的话,圆也还是能够称之为一种特殊的椭圆,特殊在它的两个焦点重合,焦距等于零。
所以用这种方式来表示的话,圆就像是椭圆的一种零点情形。
如果再结合模曲线呢?
萧易的思维,在此时就仿佛穿行在无穷的迷雾之中,但是,直到某一刻,他们的舱室上升到了一个更高的高度时,从云层中穿过的阳光,恰好透过了舷窗,照射在了他的面颊上。
于是,他的思维就从那层层迷雾中钻了出来。
进而产生了一个全新的想法。
“如果我可以构造一个高维的模曲线类似物,它会是什么样子?”
他抬起了头,张目对日。
眼睛格外的明亮。
“这个空间应该包含通常的模曲线,使其作为一个‘切片’,但同时也应该包含更多的信息,以刻画那些特殊的扩展L-函数。”
“所以……”
他直接就从自己的口袋中拿出了一支笔和一个小记事本,开始在上面写了起来。
他已经想到了一个全新的,模曲线的类似物。
一个更高维度的模曲线。
他将其命名为,广义模曲线。
现在将其记为x_f^(n),本身是一个n维的复流形,它参数化了一类特殊的n维阿贝尔簇,这些阿贝尔簇具有一些模性质,类似于通常的椭圆曲线。
嗯……
然后还需要加一些东西进去,才能够这个东西更加具有普适性。
于是他的思维又一次跨越,回忆起了曾经掌握的那些数学知识。
shimura簇、siege1模形式……